Improved accuracy of GRACE gravity solutions through empirical orthogonal function filtering of spherical harmonics
نویسندگان
چکیده
[1] One of the major problems one has to deal with when working with Gravity Recovery and Climate Experiment (GRACE) data is the increasing error spectrum at higher degrees in the provided Stokes coefficients, appearing as unphysical North-South striping patterns in the maps of equivalent water height (EWH). This phenomenon is commonly suppressed by application of a Gaussian smoothing filter, which unfortunately causes loss of signal and leakage between basins. In this paper we show how a significant amount of the striping can be removed by making use of the temporal characteristics of the error spectrum. The Stokes coefficients are decomposed using empirical orthogonal function analysis and the individual modes are tested for temporal noisiness. After filtering, maps of EWH are largely free of striping. Tests on simulated EWH estimates show that our filtering technique has a marginal effect on the predicted geophysical signal. Citation: Wouters, B., and E. J. O. Schrama (2007), Improved accuracy of GRACE gravity solutions through empirical orthogonal function filtering of spherical harmonics, Geophys. Res. Lett., 34, L23711, doi:10.1029/2007GL032098.
منابع مشابه
A Comparison of Global and Regional GRACE Models for Land Hydrology
When using GRACE as a tool for hydrology, many different gravity field model products are now available to the end user. The traditional spherical harmonics solutions produced from GRACE are typically obtained through an optimization of the gravity field data at the global scale, and are generated by a number of processing centers around the world. Alternatives to this global approach include s...
متن کاملComparison of Regional and Global GRACE Gravity Field Models at High Latitudes
In this study we address the question of whether regional gravity field modeling techniques of GRACE data can offer improved resolution over traditional global spherical harmonic solutions. Earlier studies into large, equatorial river basins such as the Amazon, Zambezi and others showed no obvious distinction between regional and global techniques, but this may have been limited by the fact tha...
متن کاملGeoid-to-Quasigeoid Separation Computed Using the GRACE/GOCE Global Geopotential Model GOCO02S - A Case Study of Himalayas and Tibet
The geoid-to-quasigeoid correction has been traditionally computed approximately as a function of the planar Bouguer gravity anomaly and the topographic height. Recent numerical studies based on newly developed theoretical models, however, indicate that the computation of this correction using the approximate formula yields large errors especially in mountainous regions with computation points ...
متن کاملEmpirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation
This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system. In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...
متن کاملGRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake
[1] We show that spherical harmonic (SH) solutions of the Gravity Recovery and Climate Experiment (GRACE) are now of sufficient quality to observe effects of co-seismic and post-seismic deformation due to the rupture from the Mw = 9.3 Sumatra-Andaman earthquake on December 26, 2004, and its companion Nias earthquake (Mw = 8.7) on March 28, 2005. The improved GGM 03 SH (Level 2) solutions, and i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007